收藏-热泵系统的设计选型设计选型 热泵的正确选型基于其输出的热功率。该功率不是恒定的,它同样取决于制约能效比的那些因素: 热源温度(供水温度); 冷源温度(外界气温);除霜次数;负荷系数。 在热泵......
设计选型
从图表中不难看出,技术数据中的额定功率,一般对应外部气温7°C和供水温度35°C(额定功率点:A7W35),这与设计要求的热泵输出功率可能会有较大区别。此外,从图表中可以看出,使用R410A制冷剂的热泵的输出功率比充注R32的热泵受外部温度和供水温度的影响要大得多,使用R32制冷剂的热泵其输出功率在-7°C以上是稳定的。
以使用 R410A (图 29)的热泵的功率曲线和下面的建筑设计数据为例 :
得出可以选择额定功率为9 kW的热泵。而实际上,额定功率为7 kW的热泵设计选型有点低。
与相同设计数据匹配,如果使用R32制冷剂的热泵(图 30),可以选择额定功率为7 kW的热泵,规格比使用 R410A制冷剂的热泵低。
家用规格的热泵从一个功率过渡到另一功率会对其耗电量和电气系统的成本产生很大影响。如果设计条件正处于两个不同功率大小的中间位(如图29中),建议评估不同的选型方法,考虑建筑物的实际功率曲线或热容量。
根据所需的实际功率曲线选型
在住宅的实际耗热中,有一部分能量不是由供暖系统提供的,而是来自家电和照明的正常使用、居住成员以及阳光照射。这些免费的热负荷解释了图31中实际功率曲线与建筑物所需的理论功率曲线之间的差异。
在设计条件下,免费热源的贡献非常有限(主要是因为与阳光照射有关的部分大幅减少),不过评估范围在0.5至1.5kW内。如果把免费热源考虑在内,可以根据实际热功率 (P REALE ) 选型,即设计功率(P PROGETTO ) 减去届时条件下的免费热源 (P GRATUITA ) 。
考虑热容量的设计选型
这种方法比以前的更先进,它是基于这样的观念:现代或最近翻新住宅热惰性高,因为屋顶和墙体的保温措施更好,室内热量散发更慢。
建筑结构的热惰性与电池效果类似:在较热时段里,建筑内会将系统提供的热量积蓄起来,然后在较冷时段里释放出来。通过这种方式可减少热泵所需最大功率而获得一种功率峰值阻尼效应。
图32说明了典型的惰性效应,模拟了一周内所需功率的趋势,室外温度与设计温度(最低-7°C)相当。
曲线显示出住宅内温度为20°C±0.5°C所需功率趋势,分别对比低惰性住宅和高热惰性住宅。可以看到,低惰性住宅(仅需要6.5 kW功率)的热泵所需的峰值功率与设计相当;而在具有高热惰性住宅中,热泵所需功率减少了15%。
根据围护结构热容量设计选型是动态的,须借助适当计算软件,考虑到建筑围护结构随着室外温度和其供暖系统变化时的表现。
这种选型方法主要用于优化高能效住宅中的系统计算。对于持续供暖的系统,这种方法很有效。事实上,如果系统在夜间关闭(例如办公楼),建筑物本身惰性功率峰值阻尼效应会显著降低。
除了热源,系统中所有元件都需要正确地选型。因此,了解和评估诸如流量和供水温度等主要运行参数非常重要。
流量
额定流量通常是指蒸发器进出口之间平均温差约5℃时的流量。
最大允许流量是最小温差约3℃时的流量,而最小流量对应的则是最大温差约8℃时的流量。
如果流量不足(低于最小流量),蒸发温度过低,这种情况会导致安全装置的干预和热泵停机,蒸发器可能会结冰,从而导致制冷回路出现严重故障。
水流开关可以验证系统内最小循环流量:当低于制造商所示限制时,装置会向设备发出警报,停止运行以避免可能的损坏。
运行温度
在供暖模式下,热泵的最佳运行温度通常在 35°C 系统侧)生活热水的供应则在 50到60°C 。需要随时考虑的是热泵效率,所需温度越高,其能效比越低。
因此,必须在设备热水生产温度(应尽可能低)和终端所需供水温度(应尽可能高)之间找到折衷方案。有时有必要设计更大的散热系统,以便其以低于额定供水温度运行。要综合考虑的是在增加的额外成本、制热效率和与最高运行温度方面的物理限制之间找到折衷方案。
此外,虽然可以降低技术用水的生产温度,来提高设备性能,但要同时考虑到使用低于标准温度的末端可能带来的舒适度损失。例如对于风机盘管,建议在输送温度高于40°C情况下工作,以免影响舒适度:否则,人的皮肤会有冷感(人体温度约在36°C)。
在制冷模式下,通常产生的冷水最低温度为 7°C 。但是,在某些特殊的系统内,产生的技术用水还可以达到5°C。
夏季,制冷产生的冷水温度越低,设备制冷效率 (EER) 就越低,与冬季情况类似。制造商对设备有可以达到的物理温度上的限制,这是为了避免制冷装置的交换器结冰。通过将乙二醇与水混合来,改变流体的热性能,就可以克服这一障碍。而把制冷系统与除湿机结合使用,比如辐射制冷系统,可以使供水温度提高到 15–18°C 。
除霜时,化霜产生的水从室外机底部排水管排出;因此,最好通过排水和集水系统来防止冻结。可以用带电加热的收集盘,或将排水管直接排入下水道。最后还可以通过一层砾石排水,地面与设备之间保持最小距离(图35)。
除霜会对热泵性能带来不利影响,因为冷媒循环部分功率用于外部单元除霜,而不是传输到流体中。事实上,与额定性能相比,除霜过程会导致:
能效比降低;
热功率下降。
外部单元结冰条件(外部温度低和绝对湿度高)出现越频繁,这两种现象就越明显。令这两个因素雪上加霜的最糟糕组合在-4°C和+4°C温度范围内。
除霜现象也属无奈,因为它仅取决于外部空气的温湿度条件。但是,在热泵的选择和选型时应考虑到这一点,特别是当外部空气的设计温度恰好在处于受这种现象影响最大的范围内时。为此,制造商在技术资料中给出了包括除霜循环的热泵性能图表。
除霜循环需要一定热能,根据不同的系统,热能可以来自用户供热回路或缓冲罐。
高惰性系统
如果系统具备足够热惰性,可以暂时冷却管道中的水,保持设备良好运行而不会降低用户的舒适度(图37)。
设计上需要让一部分供热系统回路始终处于运行状态。例如,在小型住所如两居室,最好通过开关热泵直接调节系统,而无需在设备和散热终端之间有任何调节或截止装置(如地板辐射回路的热电阀控制)。
低惰性系统
在低热惰性系统(例如风机盘管系统)或可用流量低于制造商要求的最小流量时,必须将一次系统(热泵的)通过旁通阀或水力分压器(图37)与二次系统(用户供暖回路)分离开来。
如果使用的是旁通阀,则必须在主回路的回水上加一个缓冲罐。也可以连接缓冲罐作为水力分压器。后一种方案在利用储热除霜模式下可以保证环境连续供热。
生活热水生产
最后,在某些应用中,将生活热水的生产与供暖分离更加合适。这种情况可能发生在:翻新改造中,原来就有集中或独立的生活热水供水系统,或热泵没有热水功能(例如气-气式)。在这些情况下,可以考虑气-水式热泵热水器。
热泵热水器通过两个通往外部的管道(进气和排气)工作,或者从环境空气中吸气,然后通过管道排到外部。还有一些型号配备有内外机(两部分)。
气-水式热泵热水器虽然采购成本较高,但可以避免热泵在制冷功能时由冷转热,从而提高设备性能。